Useful R commands.

Basic Commands:

\[x + y, x \cdot y, x^y, x/y \]
Point-by-point addition, subtraction, multiplication, division of two vectors

If a is a constant,
a + x, a*x, etc.
Adds, multiplies, etc. each entry of vector x by the constant a

\[x[n] \]
Entry n of vector x

\[x[-n] \]
Remove entry n of vector x

\[x = c(...) \]
Concatenate listed data into vector x

\[x = \text{read.csv}("address", \text{header}, \text{sep}) \]
Read delimited data into vector x
address = web address or file location or “clipboard”
header = TRUE if data contains variable names in row 1
sep is the symbol which separates entries
(the default is comma, sep = ",")

\[\text{sep = "/t", sep = " "} \]
Use tab, empty space as separator

\[x[m,n] \]
Entry in row m, column n of data frame x

\[x[\text{condition, }] \]
Rows of data frame x satisfying listed condition

\[\text{data.frame}(...) \]
Creates a data frame using the listed vectors

\[\text{table}(x,y) \]
Creates a two-way table from vectors x and y

\[x\$... \]
A selected column of data frame x

\[\text{mean}(x), \text{median}(x), \text{sum}(x), \text{length}(x) \]
Mean, median, sum, length of vector x respectively

\[\text{summary}(x) \]
Gives 5-number summary of x plus its mean

\[\text{sd}(x) \]
Sample standard deviation of x

\[\text{weighted.mean}(x, w) \]
Weighted mean of data x, using weighting vector w

\[\text{rep}(x,n) \]
Repeats entry x a total of n times

Graphics:

\[\text{stem}(...) \]
Stem and leaf plot

\[\text{boxplot}(...) \]
Boxplot

\[\text{hist}(x, \text{breaks}) \]
Histogram of data x
breaks defaults to Sturges rule, breaks = n
creates n breakpoints for binning the data

\[\text{plot}(x,y) \]
Basic scatterplot of response variable y versus predictor variable x

Optional graphical arguments:

\[\text{main = "title"} \]
Quoted text appears as a title

\[\text{xlab = "label", ylab = "label"} \]
Labels x and y axes respectively with quoted text

\[\text{col = "some color"} \]
Makes various things in the plot the quoted color.

\[\text{write.table}(\text{data}, \"\text{clipboard}\", \text{sep="\t"}) \]
Copies data frame data onto clipboard so that it can be pasted into other applications.

Regression:

\[\text{model = lm}(y \sim x_{1}+x_{2}+..., \text{data}) \]
Creates linear model named “model”, with response variable y, predictor variables x1, x2,
..., data is the data frame used

\[\text{summary}(\text{model}) \]
Provides information about linear model “model”, including regression coefficients, the
coefficient of determination, and residuals.

\[\text{cor}(y,x) \]
Correlation coefficient between variables y and x.

\[\text{predict}(\text{model, list(\ldots)}) \]
Gives a point estimate of the value of the response variable in the linear model “model”,
list(\ldots) specifies the values desired for the predictor variable(s).

\[\text{predict}(\text{model, list(\ldots), interval, level}) \]
Creates a prediction interval if interval=“predict”, with confidence level specified.
Probability distributions:

- `dbinom(v, size, prob)`
 Probability density of binomial distribution at point(s) given in vector v, size= # of trials, prob=success probability
- `pbinom(v, size, prob, lower.tail)`
 Tail (cumulative) probabilities in binomial distribution, lower.tail defaults to TRUE, lower.tail = FALSE gives upper tail probabilities, ignoring the point(s) in v.
- `rbinom(v, size, prob)`
 Simulate indicated number of binomial trials. Entries in v give the number of simulations desired.
- `dpois(v, lambda)`
 Similar commands for Poisson distribution.
- `ppois(v, lambda, lower.tail)`
- `rpois(v, lambda)`

- `pnorm(v, mean, sd, lower.tail)`
 Similar commands for normal distribution.
- `rnorm(v, mean, sd)`
- `qnorm(v, mean, sd)`
 Returns percentile(s) in v in the indicated normal distribution.
- `pchisq(v, df, lower.tail)`
 Similar commands for chi-square distribution
- `rchisq(v, df)`

Matrices:

- `matrix(v, nrow, ncol, byrow)`
 Creates a matrix from data v with indicated number of rows/columns. byrow=TRUE fills the matrix one row at a time, byrow=FALSE fills the matrix column by column.
- `M %*% N`
 Matrix multiplication of M and N
- `M %^% n`
 n-th power of square matrix M (with expm library loaded).
- `eigen(M)`
 Computes eigenvalues and corresponding eigenvectors of matrix M
- `eigen(M)$vectors[,n]`
 Selects indicated eigenvector of M.

Sampling:

- `sample(v, n, prob, replace)`
 Draws a random sample of n from objects in vector v. prob is a vector of probabilities that give the probability of drawing each member of v. If prob is missing, all entries in v are assumed equally likely. replace=TRUE samples with replacement.

Hypothesis Testing:

- `prop.test(x, n, p, alternative)`
 Compares a sample of x successes in n trials versus baseline (null hypothesis) p, alternative is either “less” (than null hypothesis expects), “greater”, or “two.sided”
- `t.test(data, mu, alternative)`
 Carries out one-sample t-test comparing data vs. baseline mean mu.
- `t.test(data1, data2, mu, alternative)`
 Compares two samples of data (data1 and data2), mu is expected difference in means, alternative = “less” uses mean1 < mean2 for the alternate, ...
- `chisq.test(counts, p)`
 Carries out chi-squared goodness-of-fit test. counts is a vector of data broken into categories, p is expected distribution of probabilities.

Analysis of variance:

- `aov(y~x, data)`
 Carries out (one-way) ANOVA to determine if significant differences in response variable y exist among the various groups given in vector x.
- `plot(y~x, data)`
 Produces boxplots of response variable y in each of the treatment groups
- `pairwise.t.test(y,x)`
 Gives the result of (post hoc) t-tests to detect differences in y among every possible pair of groups in x.

Miscellaneous:

- `help(any R command name)`
 Opens a window in a web browser with information about using the indicated command.
 Depending on the command, it could be kind of technical though, so don’t rely on this too much...